advertisement
It is very exciting to hear another positive story about vaccine trial results – a good vaccine is the most likely way of ending the pandemic.
Last week, interim results from Pfizer suggested its vaccine reduces cases of COVID-19 with 90% efficacy. Now Moderna has gone one better, with interim results showing nearly 95% efficacy for its vaccine – with hints that it may protect against severe disease. Neither have reported any serious safety concerns and have tested their vaccines in tens of thousands of participants.
With that in mind, here are six questions to ask about any new vaccine trial result.
Almost certainly yes if it has successfully passed through a phase 3 trial with thousands of participants. Vaccines do not get this far if there are any major doubts about safety.
Historically, pharmaceutical companies have been able to suppress negative results, but it’s now legally required for all trials to post their results so that other scientists can review them. As a consequence the sector is generally far more trusted than it used to be, although we should still be cautious if only interim results are being reported.
Some people are concerned that COVID-19 vaccines have been produced with unprecedented speed; however, the vast majority are based on platform technologies with excellent safety profiles. There are a few newer technologies being used, but the clinical trial and regulatory process is extremely rigorous and will pick up the majority of potential complications fairly early on in development.
Trials often measure many things, but there is always a single primary research question or objective that a trial has been designed to answer.
Trials will also have several secondary research questions, but answering these is not considered a mark of success. If you test enough different objectives, a few will always be met due to blind chance. Misrepresenting trial data in this way is a form of research misconduct called p-hacking. You can find out the primary and secondary objectives of any trial by checking a clinical trial registry.
Determining what counts as a medicine or drug “working” can be quite complicated for many diseases. But for vaccines, the question to ask is quite simple: did people who had the active vaccine get the disease? Any measure that’s more complicated than this (often referred to as a surrogate outcome) should be treated with caution.
Are the results of a trial transferable to the real world? Here it’s important to understand the difference between a population (in this case everyone who can catch COVID-19) and the sample of that population who took part in the trial.
In many cases, trials use two carefully matched (and so comparable) samples in carefully controlled conditions. One is given the vaccine and the other a placebo (such as saline injection or an already developed vaccine for another disease) to control for the effect of participants thinking they have been vaccinated – which does have an effect.
This is why the final-stage (phase 3) trials are so important, as the sample is chosen to represent the population that the vaccine is targeted at. Formal publications of trial results normally provide a table describing who was in the sample, and often efficacy rates for the different groups (broken down by sex, age and so on). Unfortunately, the headline efficacy figure (95% for instance) may not apply evenly across the population.
This is very important for COVID-19, as we know older people are much more vulnerable. We therefore shouldn’t read too much into any results until we can see an age breakdown for efficacy.
Before we get too excited, some practical questions must be asked. How much will the vaccine cost? Can it be made in bulk? Is it easy to transport and store? And how many boosters will be needed? These logistic problems (for instance, the requirement to be stored and transported at very low temperatures) can easily prevent a new vaccine getting into the clinic.
It’s an increasingly important skill to identify between reliable and unreliable sources. Social media is often superficial and prone to spreading misinformation. On the other hand, journal articles and clinical trial registries can be hard to interpret for anyone except specialists.
It’s also important to ask where a journalist found the information they are reporting on. Referencing results published in peer-reviewed journals is a good sign – it shows some rigorous fact checking has occurred. Be careful if an article’s main sources seem to be preprints (papers not yet peer reviewed) or other so-called grey literature, such as press releases or company reports.
Likewise, be careful if the main source seems to be interviews or quotes from people with PhDs or impressive sounding job titles. A quote from a scientist in an interview is not equivalent to a quote from the same scientist in a peer-reviewed academic paper.
(This is an opinion piece and the views expressed above are the author’s own. The Quint neither endorses nor is responsible for the same. This article was originally published on The Conversation. Read the original article here.)
(At The Quint, we question everything. Play an active role in shaping our journalism by becoming a member today.)